
1

CHAPTER FIVE: INTENSIONAL TYPE LOGIC

We will be short about the discussion of intensionality itself in this chapter, presupposing the

discussion in Foundations and providing a more systematic setting for the operations of

intensionalization and extensionalisation introduced there. We will introduce TY2, two

sorted type theory as our basic model and after that introduce Montague’s IL for comparison.

5.1. Sorted Type theory

Sorted predicate logic is a subsystem of predicate logic.

Suppose that our domain D is sorted into two domains: D = M F, where M F = Ø.

Suppose we have two types of variables: VARm = {m1,m2…} and VARf = {f1,f2…}.

And suppose we introduce sorted quantification:

If m VARm and FORM then m FORM

If f VARf and FORM then f FORM

Fact: Sorted quantification can be expressed in unsorted predicate logic.

We do this by introducing two special predicates MOUSE, FOX and set (for every model):

FM(MOUSE) = M and FM(FOX) = F

Let be a formula and let x be a variable that does not occur in .

Then: m ⇔ x[MOUSE(x) → [x/m]]

 (where [x/m] is the result of replacing every free occurrence of m in by x)

Thus, if we allow predicate denotations to be set in this way, introducing sorts in predicate

logic does not influence the expressive power of predicate logic.

Obviously, the same is true in type logic. So we can unproblematically add more basic

types. and get a sorted type theory.

Example: numbers.

TYPETLn is the smallest set such that:

 1. e, t, n TYPETLn

 2. If a,b TYPETLn then <a,b> TYPETLn

The type logic is exactly the same. I only add the clauses and structure that is new, the

clauses are only sample clauses (i.e. you may want to add real numbers, arithmetic

operations, measure functions, etc. etc.)

2

1. If α EXP<a,t> then |α| EXPn

2. <, > CON<n,<n,t>>

3. A model for TLn is a structure M = <D, < ℕ,<ℕ >, FM>,

 < ℕ,<ℕ > is the natural numbers ordered by smaller than.

4. Dn,M = ℕ

5. If α EXP<a,t> then ⟦ |α| ⟧M,g = |ch(⟦α⟧M,g)|,

 where ch(f) is the set characterized by f

6. FM(<) = curry(<ℕ),

 FM(>) = curry(>ℕ)

 where curry(<ℕ) is curried relation of type <n,<n,t>>that corresponds to <ℕ.

Important: the relations between types n, <n,t>, and <<n,t>,t>> are similar to those between

 e, <e,t>, and <<e,t>,t> . i.e. D<<n,t>,t> is also a freely generated complete atomic

 Boolean algebra.

In this language we can express the determiner meaning of most directly as:

 λQλP. |λx.Q(x) P(x)| > | λx.Q(x) P(x)|

5.2. Two sorted type theory TY2

Possible world semantics is concerned with modality, the variation of extension across

possibilities, possible situations, times, world-time pairs,…

I will call them worlds, for short (in the literature they are also called indices).

We are now extending type theory with a type for possible worlds.

The logical language in question is called TY2, two sorted type theory, where the types are

individuals and worlds. The type for worlds is called s.

TYPETY2 is the smallest set such that:

 1. e,t,s TYPETY2

 2. if a,b TYPETY2 then <a,b> TYPETY2

The language of TY2 is just the same language as TL, except that there are now also

variables of type s (and possibly constants).

And we include in TY2 a special relation of type <s,<s,t>>:

R CON<s,<s,t>>

A model for TY2 is a structure: M = <D, <W,RW>, F>,

 where D is a non-empty set of individuals,

 W a non-empty set of possible worlds,

 R W × W the accessibility relation on W, a two place relation between worlds.

 and F an interpretation function for the logical constants such that:

 F(R) = curry(RW), the appropriate curried version of Rw

3

And we set:

Ds,M = W

This is all there is to TY2, the rest is all the same as in TL.

Some sample new types:

<s,e>, the type of expressions denoting functions from worlds into individuals:

individual concepts.

<s,t>, the type of expressions denoting functions from worlds into truth values:

propositions.

These functions are characteristic functions of sets of possible worlds.

Hence we identify propositions with sets of possible worlds.

<s,<e,t>>, the type of expressions denoting functions from worlds into sets of individuals:

intensional properties.

<s,<<e,t>,t>>, the type of expressions denoting functions from worlds into generalized

quantifiers intensional generalized quantifiers.

5.3. Variation of extension across worlds

Possible world semantics for modality is concerned with variation of extension across

worlds. In the modal predicate logic that we discussed in Foundations we dealt with that by

interpreting expressions relative to possible worlds. We defined:

 ⟦α⟧M,w,g, the extension of α in world w relative to model M and assignment g

e.g. ⟦PURR(RONYA)⟧M,w,g = 1 iff FM,w(RONYA) FM,w(PURR)

and added modal operators to the language:

 ⟦⟧M,w,g = 1 iff for some v W: RW(w,v) and ⟦⟧M,v,g = 1

A characteristic property of this approach is that the reference to worlds and quantification

over worlds never happens in the object language.

This is different in TY2.

In TY2 all reference to worlds and quantification over worlds is represented explicitly in the

object language TY2. And this is because TY2 is just TL, you only evaluate relative to a

model and assignment function, not relative to a world:

 ⟦α⟧M, g, the extension of α relative to model M and assignment g

So what do you do if you want to express that Ronya purrs in world w but not in world v, i.e

that purr varies its denotation from world w to v?

This:

4

1. Since the purr needs to vary its extension from world to world,

you interpret purr as a TY2 predicate PURR CON<s,<e,t>>, an intension, a function from

worlds to extensions.

So: PURR ∈ CON<s,<e,t>> and FM(PURR) (W → D<e,t>)

This is different from what we did in modal logic before, where we interpreted purr as

PURR CON<e,t>, but assigned different extensions in different worlds:

 FM,w(PURR<e,t>) D<e,t>

The strategy of TY2 is: every expressions that varies its interpretation across worlds is

interpreted as the intension that expresses that variation.

To get the extension, we need to apply that intension to a world variable.

It will now be useful to have a notational convention:

Notation: If α EXP<s,a> and w VARs then: αw := (α(w))

So we write the world-indices as subscripts on the expressions that vary their extension

along worlds.

If we want to express in modal predicate logic that Ronya purrs in world w and doesn't purr

in world v we do that by assuming PURR ∈ CON<e,t> and:

 ⟦PURR(RONYA)⟧M,w,g = 1 and ⟦PURR(RONYA)⟧M,v,g = 0

In TY2 we express the same with PURR ∈ CON<s,<e,t>> , using mnemonic variables:

 ⟦PURRw(RONYA) PURRv(RONYA)⟧M,g = 1

 where g(w) = w and g(v) = v

This is true if Ronya purrs in w, but not in v.

Now, when we take a normal non-modal sentence like Ronya purred (ignoring the tense),

then we assumed in modal logic that this sentence is evaluated relative to a world of

evaluation, the real world, the world in which the context locates itself: w0.

We make the same assumption in TY2, but it takes a slightly different form.

In predicate logic, variables that are free in a formula are assigned a value by the outside

assignment function g, and we think of those as being deictically linked.

In TY2 we assume the same for linking to the real world. We choose one variable, say, w, to

be the variable that the outside assigment function g links to the real world:

 g(w) = w0

This means that if variable w occurs free in , it is linked 'deictically’; by g to w0.

But, w is just a variable like others.

If w is bound in it doesn't link to w0 any more.

5

Since by default we start out by assuming that expressions are interpreted relative to the

some world w0 unless there is modality involved,

we will interpret an expression like Ronya purrs and Emma does not, by using the same free

world variable:

 PURRw(RONYA) PURRw(EMMA)

We don't have modal operators in the language, but we do have quantification over worlds

and abstraction over worlds.

And that means that we can express the semantic effects of modal operators directly in the

language.

Now look at the sentences (1a,b):

(1) a. Virginia Woolf could have been the author of Ulysses.

 b. Virginia Woolf could not have been the author of Finnegans wake.

author of Ulysses → AU CON<s,<e,t>>

author of Finnegans wake → AF CON<s,<e,t>>

Virginia Woolf → WOOLF CONe

In modal predicate logic we translated these sentences as in (2):

We choose predicates AU, AF ∈ CON<e,t> and wrote:

(2) a. (WOOLF = σ(AU))

 b. (WOOLF = σ(AF))

with truth conditions:

(3) a. ⟦ (WOOLF = σ(AU))⟧M,w,g = 1 iff

 v W[R(w,v) and FM,v(WOOLF) = σ(FM,v(AU))

 b. ⟦(WOOLF = σ(AF))⟧M,w,g = 1 iff

 v W[if R(w,v) then FM,v(WOOLF) σ(FM,v(AF))

In TY2 we represent the sentences in (1) as:

(4) a. v[R(w,v) (WOOLF = σ(AUv))] v[R(w,v) (WOOLF = σ(AFv)))

What we see is:

The fact that the expression the author of Ulysses occurs in the scope of modal operator is

interpreted as the assumption that the world variable relative to which the extension of

author of Ulysses varies is bound by the quantifier over possible worlds.

Thus, the author of Ulysses is not itself evaluated relative to world w0.

The modal operator itself though is evaluated relative to w0, because the modality is

restricted by the accessibility relation which is in this example linked to w0 via the free

variable w.

6

Abstraction over possible worlds brings you from extensions to intensions:

(5) a. [S Ronya purrs]

 b. (PURRw(RONYA)) true relative to M,g if in w0 Ronya purrs

(6) a. [CP That Ronya purrs]

 b. λw.(PURRw(RONYA)) =

 λv.(PURRv(RONYA)) the set of worlds v where ronya purrs. <s,t>

This means that the CP denotes the proposition that Ronya purrs, and note that the

expression in (6b) no longer has a free world variable. This is essential in dealing with the

intensionality puzzles.

I will now make a typographical assumption that will make the notation a bit more readable

and a bit closer to Montague’s intensional logic.

Notation convention: If w ∈ VARs then β
∧w := λw.β

So the notation is just lambda abstraction over a world variable, but it bring out the fact that

we are dealing with an intension.

[Maybe I should have written β
𝜆w . If you prefer that, you can think of β

∧w as being just that,

but λ written with a capital letter Λ.]

So:

(6) a. [CP That Ronya purrs]

 b. (
∧w PURRw(RONYA)) =

 (
∧v PURRv(RONYA)) the set of worlds v where ronya purrs. <s,t>

5.4. Propositional attitudes

 (1) and (2) do not entail (3):

 (1) Fred believes that the author of Ulysses is the author of Ulysses.

 (2) The author of Ulysses is the author of Finnegans Wake.

 (3) Fred believes that the author of Ulysses is the author of Finnegans Wake.

Analysis:

BELIEVE is a constant of type <s, <<s,t>,<e,t>>>.

This means that BELIEVEw is a relation between individuals and propositions (x believes p

in w).

(1a) BELIEVEw(FRED, σ
∧w (AUw) = σ(AUw))

(2a) σ(AUw) = σ(AFw)

(3a) BELIEVEw(FRED, σ
∧w (AUw) = σ(AFw))

When we clarify the nature of bound variables, we see that the pattern is clearly invalid

(even if we don't specify more about the possible world semantics of believe):

(1a) BELIEVEw(FRED, σ
∧v (AUv) = σ(AUv))

7

Fred stands in w in the believe relation to the sets of worlds where the author of Ulysses is

self identical. This is the set of all possible worlds!

(2a) σ(AUw) = σ(AFw)

The author of Ulysses in w is the author of Finnegans wake in w (this is true!)

(3a) BELIEVEw(FRED, σ
∧v (AUv) = σ(AFv))

Fred stands in w in the believe relation to the sets of worlds where the author of Ulysses is

the author of Finnegans wake.

This is not the set of all possible worlds, because there may be worlds in which FW wasn't

written, or written by somebody else (unlikely), or Ulysses wasn't written, or written by

somebody else.

So there is no reason that (1a) and (2a) entail (3a).

Similarly for the modal inference pattern:

(4) Virginia Woolf could have been the author of Ulysses.

(5) The author of Ulysses is the author of Finnegans wake.

(6) Virginia Woolf could have been the author of Finnegans wake.

(4a) v[R(w,v) (WOOLF = σ(AUv))]

(5a) σ(AUw) = σ(AFw)

(6a) v[R(w,v) (WOOLF = σ(AFv))]

(4a) and (5a) for the same reason do not entail (6a): there might be an accessible world

where Virginia Woolf wrote Ulysses, even if there is no accessible world where she wrote

Finnegans wake.

A technical remark. Compositionally, the fact that modal operators are variable binding

operators means that they don't operate on the extension of their complement, but on the

intension.

Thus, if we compositionally want to divide w[R(w,v) [w/v]] into the modal and non-

modal meaning that are combined, we do that by backwards λ-conversion: with

p VAR<s,t>:

 (1) w[R(w,v) [v/w]]

 (2) w[R(w,v) φ[w](
∧w v)]

 (3) λpw[R(w,v) p(v)] (φ[w]
∧w)

This means that we can define the modals as:

 = λp ∃v
∧w [R(w,v) p(v)]

 □ = λp ∀v
∧w [R(w,v)→ p(v)]

But as operations they don't operate on w of type t but on φ, which is φ[
∧𝑣 v/w] of type

8

<s,t>

Thus, modal operators are analyzed as functions from propositions to propositions, from sets

of worlds to sets of worlds.

So let φ ∈ EXP<s,t>.

φ is true in a world w iff w ∈ φ.

 ◇ maps the set of worlds where φ is true onto

 the set of worlds from which a world is accessible where φ is true.

With this it is indeed the case that

◇φ is true in world w iff w ∈ ◇φ iff w is a world from which a world is accessible where φ

is true, i.e. from which a world v is accessible such that v ∈ φ.

Notationally, you will find also analyses that stress the analogy with generalized quanfiers,

that define □ and ◇ just as generalized quantifers EVERY and SOME but as relations

between sets of worlds.

Then, if we set:

 Rw = λv.R(w,v), we will write:

Instead of □φ: EVERY[Rw, φ[
∧𝑣 v/w]] or Rw ⊆ φ[

∧𝑣 v/w]

Instead of ◇φ: SOME[Rw, φ[
∧𝑣 v/w]] or Rw ∩ φ[

∧𝑣 v/w] = Ø

5.5. Seek and find

In TY2 we can also analyze intensional verbs that are not express propositional attitudes.

 (4) Mary seeks the author of Ulysses.

 (5) The author of Ulysses is the author of Finnegans Wake.

 (6) Mary seeks the author of Finnegans Wake.

 (4) and (5) do not entail (6):

When we say that (4) and (5) do not entail (6), we mean that there is a reading of (4) and a

reading of (6) on which (4) and (5) do not entail (6).

At the same time, we have to recognize that there is also a reading of (4) and of (6) on which

the inference is perfectly valid.

That is, (4) and (6) are ambiguous between a de dicto and a de re reading.

On the de re reading of (4), the interpretation of the description the author of Ulysses comes

to the account of the speaker, that is, we interpret this expression as an object that is the

author of Ulysses according to the speaker. This reading can be paraphrased by (7):

 (7) There is a person, the author of Ulysses, and Mary seeks that person.

The inference from (7) and (5) to (8) is perfectly valid:

 (7) There is a person, the author of Ulysses, and Mary seeks that person.

 (5) The author of Ulysses is the author of Finnegans Wake.

 (8) There is a person, the author of Finnegans Wake, and Mary seeks that person.

9

On the de dicto reading of (4), the interpretation of the description the author of Ulysses

comes to the account of Mary. That is, Mary does not necessarily stand in a relation to any

actual object at all, or she may stand in relation to the wrong object, an object who she thinks

is the author of Ulysses.

What plays a role in the interpretation of (4) on this reading is not the person who is the

author of Ulysses, but rather the role that that person plays, the role of being the author of

Ulysses.

We can think of the difference in terms of when Mary would be satisified to say that she

found the author of Ulysses.

On the de re reading, she would be satisfied if she believed she had found James Joyce, who

happens to be the author of Ulysses.

On the de dicto reading, she would be satisfied if believed she had found an object which

she believed to fill the role of being the author of Ulysses.

Now, we will say more about the semantics of intensional verbs like seek below.

But we can show here that the assumption that seek creates an intensional context deals with

the puzzle.

We will make an assumption for the semantics of seek here that will only deal with this

example.

Let SEEK be a constant of type <s, <<s,e>,<e,t>>

(4a) SEEKw(MARY, σ
∧v (AUv))

(5a) σ(AUw) = σ(AFw)

(6a) SEEKw(MARY, σ
∧v (AFv))

The fact that Mary stands in w in the seek relation to the individual concept the author of

Ulysses, does not entail that she stands in the seek relation to the individual concept the

author of Finnegans wake, and the fact that both concepts happen to have the same value for

the real world doesn't change that.

For the de re-readings we will need to find a grammar mechanism that derives them. We

will do that later. But the semantic idea is as follows.

The complement of SEEKw in this analysis needs to be of type <s,e>, an individual concept.

Let x be a free variable. then x
∧v is the function that maps every world onto g(x), the

constant function on g(x).

Suppose that we interpret Mary seeks individual x as: SEEKw(MARY, x
∧v),

i.e. Mary stands in the seek relation to the individual concept that corresponds one-one with

the individual x.

Then we can analyze the de re reading via abstraction over x:

(7a) λx.SEEKw(MARY, x
∧v) (σ(AUw))

(5a) σ(AUw) = σ(AFw)

(6a) λx.SEEKw(MARY, x
∧v) (σ(AFw))

We can simplify this to:

(7a) SEEKw(MARY, σ
∧v (AUw))

(5a) σ(AUw) = σ(AFw)

(6a) SEEKw(MARY, σ
∧v (AFw))

10

Crucially, the complement stays a constant function. This has nothing to do with:

(7b) SEEKw(MARY, σ
∧v (AUv))

(5a) σ(AUw) = σ(AFw)

(6b) SEEKw(MARY, σ
∧v (AFv))

The b-pattern is de dicto and invalid. But the a-pattern is perfectly valid.

Montague and Zimmermann

Analyzing seek as a relation between individuals and individual concepts is ok for the above

examples, but not for other examples.

Let us add a second piece of data: (1) and (2) on the de dicto reading:

 (1) Mary seeks a griffin.

 (2) Mary seeks a centaur.

In the real world there are no griffins, nor are there centaurs.

The non-equivalence of (1) and (2) shows very clearly that the type of the object of SEEK

needs to be intensional.

In the real world w: F(GRIFFINw) = F(CENTAURw) = Ø .

Any extensional translation of the object of seek, resp. a griffin and a centaur, will be

compositionally built from the extensions of GRIFFINw and CENTAURw.

Since these are the same in w, these extensional translations of a griffin and a centaur will

also be the same, and (1) and (2) will become equivalent.

So we need an interpretation that uses the intension of griffin and centaur.

The above interpretation via individual concepts does that, but is tailored to definite DPs.

It is not clear how you interpret (1) and (2) on that model, because it is not clear what

individual concept the interpretations of a griffin and a unicorn would be.

Notice too that Mary need three giffins and five centaurs for the spell she has in mind,

so we also need de dicto interpretations for (3) and (4):

(3) Mary seeks three griffins and five unicorns.

(4) Mary seeks five unicorns,

Montague argued that this argument applied to DPs in general, and that we need to deal with

de dicto interpretations of (5) and (6) as well:

(5) Mary seeks every unicorn.

(6) Mary seeks most griffins.

Montague 1974 assumes that in w SEEK is a relation between individuals and intensions of

generalized quantifiers: <s,<<e,t>,t>> (actually, for independent reasons he assumes an

even higher, more intensional type). In TY2 this becomes:

11

SEEK is a constant of type <s, < <s,<<e,t>,t>>,<e,t>> >

This gives:

(7) Mary seeks a griffin → SEEKw(MARY, λ
∧v P.x[GRIFFINv(x) P(x)])

(8) Mary seeks a centaur → SEEKw(MARY, λ
∧v P.x[CENTAURv(x) P(x)])

And these are indeed de dicto and not equivalent:

if Mary stands in w in the seek-relation to the function that maps every world onto the set of

all sets of individuals that intersect the set of griffins in that world,

it doesn't follow that Mary stands in w in the seek-relation to the function that maps every

world onto the set of all sets of individuals that intersect the set of centaurs in that world,

nor does it say anything about the existence of griffins or centaurs in this world.

This can be made clearer by trying to work out more details of the lexical semantics of seek

(as try to find): here is a stab:

Sw,x,B,α is the set of success worlds in w for individual x, behaviour B and property α

 Sw,x,B,α = λ
∧v,t x.T(λyFINDv,t(x,y)) (with T a generalized quantifer):

 the set of world-time pairs <v,t> where if x shows B at time t in v,

 then at some time t' >t T(λyFINDv,t'(x,y)) holds.

Bw,x is the set of worlds compatible with what Mary believes.

 Mary seeks T in w if Mary shows in w behaviour B at time t and Bw,x Sw,x,B,α

So: Mary seeks a griffin if Mary shows behaviour B and in Mary's belief worlds,

 showing behaviour B leads to finding a griffin at some later time.

See Sharvit 2003 for a more subtle analysis.

Even so: Seeking a griffin and seeking a centaur are not equivalent, because in Mary's belief

worlds the behaviour shown may well lead to finding a griffin, but not to finding a centaur.

There is an alternative to Montague's analysis by Ede Zimmermann in the proceedings of

SALT1992 which analyzes seek at type <s, <<s,<e,t>> ,<e,t>> instead.

(9) SEEKw(MARY, G
∧w RIFFINw)

(10) SEEKw(MARY, C
∧w ENTAURw)

The difference between these approaches has to do with quantificational DPs.

Zimmerman argues that seek only has a de dicto reading with object DPs that can have a

predicative reading (definite and indefinite DPs, but not quantificational DPs like every cat

or most girls).

Zimmermann assumes that predicative DPs can get an interpretation at the type of

intensional properties <s,<e,t>>.

A wide-scope mechanism provides the de re analysis that sentences with quantificational

12

DPs as the object of seek have

On Montague's analysis seek has a de dicto reading for all object DPs.

Thus the difference of opinion concerns the analysis of (12):

Zimmerman generates only a de re reading, roughly (12),

Montague generates roughly(12) and the de dicto reading (13):

(11) Mary seeks every griffin.

(12) x[GRIFFINw(x) → SEEKw(MARY λ
∧v z.z=x)]

(13) SEEKw(MARY, λ
∧v P.x[GRIFFINv(x) → P(x)])

A situation to test the analyses on is the following.

Suppose Mary believes there are griffins, and moreover she believes that she has caught all

of them the previous weeks,

but she believes that in the meantime they have escaped.

She wants to recapture them and hence she starts seeking.

Of course, there are no griffins.

If you feel that in this situation you can felicitously and truthfully say (11),

Montague's analysis might be the one for you.

If you can't, you might want to adopt Zimmerman's.

13

5.6. Rigid designators

Notice that I have made a difference between the translations of proper names and definite

descriptions: JOYCE , σ(AUw) EXPe.

I have not interpreted JOYCE as a constant of type <s,e> and written JOYCEw.

The reason is the assumption stemming from Kripke 1972 that proper names are rigid

designators: proper names do not vary their extension from world to world: a proper name

refers to the same individual in every possible world.

This is a difference between proper names and definite descriptions.

Kripke 1972 argues that proper names are rigid in the context of modals and counterfactual

conditionals.

Look at the definite description the president in sentence (1):

 (1) If the president had not been a republican, there would have been a

democratic administration.

Sentence (1) is ambiguous.

On the one reading, it means that if the current president, Dixon, had not been a republican

he would have been a democrat.

The semantics for counterfactuals instructs us here to take the current president from our

world to close worlds where he is not a republican: it says that he's a democrat there.

On the other reading, the sentence expresses something like:

if the expression the president had referred to somebody who isn't a republican, it would

have referred to somebody who is a democrat.

This instructs us to look at the reference of the president in different worlds: go to close

worlds where whoever is the president there is not a republican, that person is a democrat

there.

Now look at the proper name Dixon in sentence (2):

 (2) If Dixon had not been a republican he would have been a democrat.

Sentence (2) is not ambiguous. It only has a reading corresponding to the first reading (1)

discussed above:

look at close worlds where Dixon is not a republican, he's a democrat there.

Sentence (2) does not mean: look at close worlds where the name Dixon does not refer to

somebody who is a republican: it refers there to a democrat.

Kripke argues (and Montague follows him in this) that this means that while definite

descriptions can refer to different individuals in different worlds, proper names cannot,

proper names are rigid designators, they refer to the same individual in every world where

they refer at all.

This is what the condition of rigidity (or the meaning postulate) guarantees.

14

5.7. Montague's Intensional Logic IL

Montague's IL is like the Modal predicate logic of Foundations in that it does not have

variables over worlds in the object languages. His types are:

TYPEIL is the smallest set such that:

 1. e,t TYPEIL

 2. If a,b TYPEIL then <a,b> TYPEIL

 3. If a TYPEIL then <s,a> TYPEIL

IL is an intensional language unlike TL and TY2.

The interpretation function changes for that reason to:

 F: CONa → (W → Da)

And the interpretation clause for constants changes accordingly:

 If c CONa then ⟦c⟧M,w,g = (F(c))(w) which we can write as Fw(c).

Montague's language has modal operators with the obvious interpretation, and an intension

and extension operator:

Intension: If α EXPa then α EXP<s,a>

Extension: If β EXP<s,a> then β EXPa

with interpretation:

 ⟦α ⟧Mw,g = h: W → Da such that for every v W: h(v) = ⟦α ⟧Mv,g

 ⟦β ⟧Mw,g = ⟦β ⟧Mw,g(w)

Clearly this corresponds to abstraction over and application to worlds in TY2

 α corresponds to λv. α[v/w]
 β corresponds to β(w)

From this you can directly derive the fact of cup-cap elimination in IL:

 Cup cap elimination
 α = α

 λv.α[v/w] (w) = α[w]

Intensionality in IL:

 (1) and (2) do not entail (3):

 (1) Fred believes that the author of Ulysses is the author of Ulysses.

 (2) The author of Ulysses is the author of Finnegans Wake.

 (3) Fred believes that the author of Ulysses is the author of Finnegans Wake.

15

Analysis:

BELIEVE is a constant of type <<s,t>,<e,t>>.

This means that relative to world w: BELIEVE is a relation between individuals and

propositions (x believes p (evaluated in w)).

(1a) BELIEVE (FRED, (σ(AU) = σ(AU))

(2a) σ(AU) = σ(AF)

(3a) BELIEVE (FRED, (σ(AU) = σ(AF))

This pattern is as invalid in IL as the corresponding pattern is in TY2.

While TY2 is an extensional language in which the intensionality is made explicit in world

variables, IL is an intensional language:

-substitution of expressions with the same extension is not valid in IL, only substitution of

expressions with the same intension is.

-λ-conversion of an expression α that is not rigid (of which the intension is not a constant

function) where α lands in an intensional context is not valid in IL:

e.g.: (1) and (2) are not equivalent:

 (1) λx.(σ(AU) = x) (σ(AF))

 (2) (σ(AU) = σ(AF))

But (3) and (4) are equivalent, because variable y is rigid:

 (3) λx.(σ(AU) = x) (y)

 (4) (σ(AU) = y)

We usually add a meaning postulate to IL to the effect that proper names are rigid so that

(5) and (6) are equivalent:

 (5) λx.(σ(AU) = x) (JOYCE)

 (6) (σ(AU) = JOYCE)

And we note that (7) and (8) and (9) are equivalent:

 Let x VAR<s,e>

 (7) λx.(σ(AU) = x) (σ(AF))

 (8) (σ(AU) = σ(AF)) by the rigidity of σ(AF)

 (9) (σ(AU) = σ(AF)) by cup-cap elimination

That this is so is shown easily by translating this into TY2: in TY2 you only need to do the

 λ-conversions to show that this is valid:

 Let x VAR<s,e>

 (7) λx.v[R(w,v) (σ(AUv) = xv] (σ
∧u (AFu))

 (8) v[R(w,v) (σ(AUv) = σ
∧u (AFu)v]

 (9) v[R(w,v) (σ(AUv) = σ(AFv))]

16

So which language should you use as a presentation language?

In practice, people use IL when the intensionality doesn’t matter much, but they want to use

the operations ∧ and ∨. These operations are visually nicer that yet another abstraction, this

time over worlds.

On the other hand, often it is useful to have the world variable explicitly marked on

expressions that vary their extension relative to worlds, and then TY2 is called for.

Also, more complex modal relations are much easier to deal with in TY2 (e.g. the work on

the semantics of questions in Groenendijk and Stokhof 1983).

 When working on topics that involves the world parameter I will in these notes use

TY2. But I like the visual cleanliness of the operators ∧ and ∨, and so I introduce TY2

variants of them, besides the indexed cap I may also sometimes use the indexed cup:

 Let v ∈ VARs.

 ∧wα := λw.α

 ∨wβ := β(w) or we use the notation βw for this

17

5.8. Adding intensional expressions to the grammar

We will now extend the grammar with the intentsional transitive verb seek, the

complementizer that, and the propositional attitude verb believe. We will follow

Montague’s strategy for interpreting seek here.

V → <<s,<<e,t>,t>>,<e,t>>, <<s,t>,<e,t>>

C → <<s,t>,<s,t>>

And we add: COMP[C,I] =E l

 Lexical item: seek

 Category: V

 Interpretation: SEEK CON<s,<<s,<<e,t>,t>>,<e,t>>>

 Lexical item: believe

 Category: V

 Interpretation: BELIEVE CON<s,<<s,t>,<e,t>>>

 Lexical item: that

 Category: C

 Interpretation: λp.p with p VAR<s,t>

We extend the type shifting theory with two operations:

 Intensionalization:

 LIFT: a → <s,a>

 LIFT[α] = ∧vα[v/w] with w the designated world variable

 Intensional argument lift:

 LIFT: e → <s,<<e,t>,t>>

 LIFT[α] = ∧wλP.P(α) [v/w]

 with w the designated world variable

SEEK is of type <s,<<s,<<e,t>,t>>,<e,t>>>.

This means that SEEKw is of type ,<<s,<<e,t>,t>>,<e,t>>, a relation between individuals and

intensions of generalized quantifiers.

It will be useful to define in terms of this relation a relation of seeking between individuals.

This relation is called SEEK∗ and it is defined as:

 SEEK∗,w = λyλx.SEEKw(x, ∧wλP.P(y))

 the relation that holds between individuals x and y iff x stands in the seek

 relation to function that maps every world onto the set of sets in De that y

 is in.

This definition will allow us to represent certain formulas in a simpler way below.

18

We will look at some examples. I will now use the format in which next to the syntactic

tree, I write a semantic tree which shows the corresponding compositional semantics.

Here A stands for APPLY[α, β], so the semantic function is written on the left.

 α β

(1) Anna seeks Ronya.

SYNTAX SEMANTICS

 IP A

 DP I' A ANNA

 │

anna I VP λP.P A

 │

 e V DP SEEKw RONYA

 │ │

 seek ronya

APPLY[SEEKw, RONYA]

RONYA is of type e. The complement of seek is of type <s,<<e,t>,t>>.

This is a type mismatch that is resolved with the new type shifting rule LIFT[α] = ∧wλP.P(α)

So:

APPLY[SEEKw, RONYA]

= SEEKw(LIFT[RONYA]) [def. APPLY]

= SEEKw(∧wλP.P(RONYA)) [def. LIFT]

APPLY[λP.P, SEEKw(∧wλP.P(RONYA))]

= [λP.P](SEEKw(∧wλP.P(RONYA))) [def. APPLY]

= SEEKw(∧wλP.P(RONYA))

APPLY[SEEKw(∧wλP.P(RONYA)), ANNA]

= [SEEKw(∧wλP.P(RONYA)))](ANNA) [def. APPLY]

= SEEKw(ANNA, ∧wλP.P(RONYA))) [rel. notation]

This expresses that Anna stands in the seek relation between the function that maps every

world onto the set of properties that Ronya has. We will now use SEEK∗,w to express that

this is a relation between individuals.

19

SEEKw(ANNA, ∧wλP.P(RONYA)))

First we do backward λ-conversion on ANNA:

 SEEKw(ANNA, ∧wλP.P(RONYA)))

= [λx.SEEKw(x, ∧wλP.P(RONYA)](ANNA) [backwards λ-con]

Then we do backward λ-conversion on RONYA.

RONYA is in the scope of the intensional operator ∧w but it is rigid (doesn’t have a world

variable), so backward λ-conversion is allowed:

 [λx.SEEKw(x, ∧wλP.P(RONYA)](ANNA)

= [[λyλx.SEEKw(x, ∧wλP.P(y))](RONYA)] (ANNA) [backwards λ-con]

and with relational notation:

 [λyλx.SEEKw(x, ∧wλP.P(y))](ANNA, RONYA)

Since λyλx.SEEKw(x, ∧wλP.P(y)) = SEEK∗,w we derive:

 SEEK∗,w(ANNA, RONYA) [def SEEK∗,w]

So we get:

SYNTAX SEMANTICS

 IP A = SEEK∗,w(ANNA, RONYA)

 DP I' A ANNA

 │

anna I VP λP.P A

 │

 e V DP SEEKw RONYA

 │ │

 seek ronya

The sentence Anna seeks Ronya expresses, as it should, a relation between individuals.

20

(2) Anna seeks a unicorn.

We add the noun unicorn with interpretation UNICORN ∈ CON<s,<e,t>>

For simplicity we write in the tree ∃ for λQλP∃x[Q(x) ∧ P(x)]

 IP A

 DP I' A ANNA

 │

anna I VP λP.P A

 │

 e V DP SEEKw A

 │

 seek D NP ∃ UNICORNw

 │ │

 a unicorn

APPLY[SEEKw, λP.z[UNICORNw(z) P(z)]]

λP.z[UNICORNw(z) P(z)] is of type <<e,t>,t>, but SEEKw requires a complement of type

<s,<<e,t>,t>>. The type mismatch is resolved with the new type shifting rule:

LIFT[α] = ∧wα

APPLY[SEEKw, λP.z[UNICORNw(z) P(z)]]

= SEEKw(LIFT[λP.z[UNICORNw(z) P(z)]]) [def APPLY]

= SEEK(∧wλP.z[UNICORNw(z) P(z)])

= SEEK(∧vλP.z[UNICORNv(z) P(z)])

APPLY[λP.P, SEEKw(∧vλP.z[UNICORNv(z) P(z)]]

= SEEKw(∧vλP.z[UNICORNv(z) P(z)])

APPLY[SEEKw(∧vλP.z[UNICORNv(z) P(z)]), ANNA]

= SEEKw(∧vλP.z[UNICORNv(z) P(z)]) (ANNA) [def. APPLY]

= SEEKw(ANNA, ∧vλP.z[UNICORNv(z) P(z)]) [rel. notation.]

So we get:

 IP A = SEEKw(ANNA, ∧vλP.z[UNICORNv(z) P(z)])

 DP I' A ANNA

 │

anna I VP λP.P A

 │

 e V DP SEEKw A

 │

 seek D NP UNICORNw

 │ │

 a unicorn

21

This expresses that Anna stands in the seek relation to the function that maps every world

onto the set of properties that some unicorn has in that world. Since there are no unicorns in

this world, this does not express a relation between Anna and any object in this world.

For clarity, we can point at the difference between Anna seeks Ronya and Anna seeks the
unicorn.

Anna seeks ronya → SEEK∗,w(ANNA, RONYA)

Anna stands in w in the SEEK∗ relation to Ronya

Anna seeks the unicorn → SEEKw(ANNA, ∧vλP.P(σ(UNICORNv)))

Anna stands in w in the SEEK to the function that maps every world onto the set of all

properties that what is in that world the (contextually) unique unicorn has. This does not

reduce to a relation in w between Anna and an individual.

Of course, these examples have de re readings too. We will deal with below and in the next

chapter.

22

(3) Anna believes that a unicorn purred.

We now come to the complementizer that.
At this point we pause to explain something important about intensional contexts.

I have assumed:

that → λp.p the identity function at type <<s,t>,<s,t>>

We know that propositional attitude verb believe takes a proposition of type <s,t> as object,

so the output type <s,t> makes sense as the type of the CP. But the complement of

complementizer that is the IP and the type of the IP is t.

So it would seem to make much more sense to assume that complementizer that is of type

<t,<s,t>>, and that would give the following obvious translation:

that → λφ. ∧wφ with φ a variable of type t.

Then we could argue:

that Ronya purrs → APPLY[λφ. ∧wφ, PURRw(RONYA)]

and reduce:

APPLY[λφ. ∧wφ, PURRw(RONYA)] [def. APPLY]

= [λφ. ∧wφ](PURRw(RONYA)) [λ-conversion]

= ∧wPURRw(RONYA) of type <s,t>

Unfortunately, we cannot do that, because the λ-conversion that we did here does not

preserve meaning, because variable w is free in PURRw(RONYA), but bound by ∧w in

 ∧wPURRw(RONYA).

[λφ. ∧wφ](PURRw(RONYA)) is equivalent to ∧vPURRw(RONYA) which denotes the

constant function on 1 if Ronya purrs in w, characterizing {1}, and the constant function on

0 if Ronya doesn’t purr in w, characterizing {0}, while what we want is

 ∧wPURRw(RONYA), the function characterizing the set of worlds where Ronya purrs.

The diagnosis of what goes wrong also suggests the solution:

You cannot take an extensional non-rigid input and expect to get the right intensional

output, because that would require binding the world variable, which functional application

doesn’t do.

Insteas we take as input the intension of this extensional non-rigid input in which the world

variable is bound, and that we map onto the right intensional output.

23

Wrong: APPLY[λφ. ∧wφ, PURRw(RONYA)]

 <t,<s,t>> t

Almost Right: APPLY[λp.p, PURRw(RONYA)]

 <<s,t>,<s,t>> t

Right: APPLY[λp.p, ∧wPURRw(RONYA)]

 <<s,t>,<s,t>> <s, t>

So to solve the problem in the right way, we need to get from the IP interpretatation of type t

PURRw(RONYA)], to its intension ∧wPURRw(RONYA)] of type <s,t>.

But, of course, we don’t need to do extra work for that, because the almost right type

mismatch resolves with

 LIFT[α] = ∧wα.

This strategy is completely general. In fact, we applied it in the previous example as well:

We didn’t suggest to translate seek as:

λTλx.SEEKw(x, ∧wT)

and try to apply λ-conversion in:

λTλx.SEEKw(x, ∧wT)(λP.∃x[UNICORNw(x) ∧ P(x)])

because λ-conversion is not valid here.

Instead we gave a translation of seek equivalent to:

λTλx.SEEKw(x,T) with T a variable of type <s,<<e,t>,t>>

and derive:

APPLY[λTλx.SEEKw(x,T), λP.∃x[UNICORNw(x) ∧ P(x)]]

which resolves with the same type shifting rule as:

APPLY[λTλx.SEEKw(x,T), ∧vλP,∃x[UNICORNv(x) ∧ P(x)]]

and we derive with λ-conversion:

λx.SEEKw(x, ∧vλP,∃x[UNICORNv(x) ∧ P(x)])

24

We do the derivation:

 IP A

 DP I' A ANNA

 │

Anna I VP λP.P A

 │

 e V CP BELIEVEw A

 │

 believe C IP λp.p A

 │

 that DP I' A A

 D NP I VP λP.P PURRw UNICORNw

 │ │ │ │

 a unicorn e purr

We derive at the lower IP level:

a unicorn purrs → ∃x[UNICORNw(x) ∧ PURRw(x)]

From here we continue with:

APPLY[λp.p, x[UNICORNw(x) PURRw(x)]]

= λp.p (LIFT[x[UNICORNw(x) PURRw(x)]]) [def APPLY]

= λp.p(∧vx[UNICORNv(x) PURRv(x)]) [def LIFT]

= ∧v∃x[UNICORNv(x) PURRv(x)]

APPLY[BELIEVEw, ∧v∃x[UNICORNv(x) PURRv(x)]]

= BELIEVEw(∧v∃x[UNICORNv(x) PURRv(x)]) [def APPLY]

APPLY[BELIEVEw(∧v∃x[UNICORNv(x) PURRv(x)]), ANNA]

= BELIEVEw(∧v∃x[UNICORNv(x) PURRv(x)])(ANNA) [def APPLY]

= BELIEVEw(ANNA, ∧v∃x[UNICORNv(x) PURRv(x)])

So we get:

25

 IP , BELIEVEw(ANNA, ∧v∃x[UNICORNv(x) PURRv(x)])

 DP I'

 │

Anna I VP

 │

 e V CP

 │

 believe C IP

 │

 that DP I'

 D NP I VP

 │ │ │ │

 a unicorn e purr

This is the reading on which a unicorn is interpreted de dicto: the claim that there is a

unicorn comes for the account of Anna, not the speaker. We will take about de re readings

in the next chapter.

26

(3) Anna seeks and finds a unicorn.

Look at (4a) and (4b)

(4) a. Anna sought and found a unicorn. She is grooming it now.

 b. Anna sought and found a unicorn, thought it is not clear that what she found was

 exactly what she was looking for.

We will give in the next chapter a scope mechanism that will derive two readings for Anna

seeks a unicorn that together with an interpretation for conjunction will derive the two

readings for (4) as well. But even without that we can entertain a simple assumption that

will derive these two readings even without a scope mechanism.

We specified in our grammar the interpretation of seek as:

seek → SEEKw of type <<s,<<e,t>t>,<e,t>>

But we also defined SEEK∗,w of type <e,<e,t>>

Let us make the assumption that SEEK∗,w is also an available interpretation of seek:

seek → SEEKw of type <<s,<<e,t>t>,<e,t>>

 SEEK∗,w of type <e,<e,t>>

In that case, we get a first reading of (3) by applying conjunction at type <e,<e,t>>, just as

we have done before:

seek and find → λyλx.SEEK∗,w(x,y) ∧ FINDw(x,y) of type <e,<e,t>>

And this combines in the normal way with the object and the subject, and we derive a de re
reading:

Anna seeks and finds a unicorn →

 ∃y[UNICORNw(y) ∧ SEEK∗,w(ANNA,y) ∧ FINDw(ANNA,y)]

But, of course, this intepretation will also assign a de re reading in the simple case:

Anna seeks a unicorn → ∃y[UNICORNw(y) ∧ SEEK∗,w(ANNA,y)]

27

What about the other reading?

Here we assume that seek is interpreted as the intension type:

seek → SEEKw of type <<s,<<e,t>t>,<e,t>>

find → FINDw of type <e,<e,t>>

We have seen how to assign a lower interpretation to seek: it derives a de re reading.

But, of course, Montague’s strategy is to assign a higher interpretation to FIND, and

interpretation at the intensional type for seek: <<s,<<e,t>t>,<e,t>>.

How do we find that interpretation?

Answer: of course, with backward λ-conversion

Anna finds a unicorn → ∃y[UNICORNw(y) ∧ FINDw(ANNA, y)]

We abstract the subject out:

find a unicorn → λx.∃y[UNICORNw(y) ∧ FINDw(x, y)]

This time we want to solve the equation:

V(∧vλP.∃y[UNICORNv(y) ∧ P(y)]) = λx.∃y[UNICORNw(y) ∧ FINDw(x, y)]

where V is of type <<s,<<e,t>t>,<e,t>>

The way to solve this is to look at what we had before in the similar extensional case:

 V = λTλx.T(λy.FINDw(x,y))

In this case the input cannot be T of type <<e,t>,t>, but must be T of type <s,<<e,t>,t>>.

So write that:

 V = λT λx.T(λy.FINDw(x,y))

The problem is that this isn’t wellformed: T is of type <s,<<e,t>,t>>, but λy.FINDw(x,y) is

of type <e,t>.

So we need to add one more thing, to make it wellformed:

you cannot apply intensional function T to λy.FINDw(x,y),

but you can apply the extension of T to λy.FINDw(x,y), so we set:

 V = λT λx.Tw(λy.FINDw(x,y)) of type <<s,<<e,t>t>,<e,t>>

or equivalently

 V = λT λx.[∨wT] (λy.FINDw(x,y))

28

Thus we add a lifting rule:

 LIFT: EXP<e,<e,t>> → EXP<<s,<<e,t>t>,<e,t>>

 LIFT[R] = λTλx.[∨wT] (λy.FINDw(x,y))

And with Boolean conjunction we now derive

seek and find → λT λx.SEEKw(x,T) ∧ Tw(λy.FINDw(x,y))

We derive:

seek and find a unicorn →

APPLY[λT λx.SEEKw(x,T) ∧ Tw(λy.FINDw(x,y)), λP.∃y[UNICORNw(y) ∧ P(y)]

= APPLY[λT λx.SEEKw(x,T) ∧ Tw(λy.FINDw(x,y)), LIFT[λP.∃y[UNICORNw(y) ∧ P(y)]]

= APPLY[λT λx.SEEKw(x,T) ∧ Tw(λy.FINDw(x,y)), ∧vλP.∃y[UNICORNv(y) ∧ P(y)]]

= λT λx.SEEKw(x,T) ∧ Tw(λy.FINDw(x,y))(∧vλP.∃y[UNICORNv(y) ∧ P(y)])

With λ-conversion we get:

= λT λx.SEEKw(x,T) ∧ Tw(λy.FINDw(x,y))(∧vλP.∃y[UNICORNv(y) ∧ P(y)])

= λx.SEEKw(x, ∧vλP.∃y[UNICORNv(y) ∧ P(y)]) ∧

 ∧𝐯λP.∃y[UNICORNv(y) ∧ P(y)]w(λy.FINDw(x,y))

[∧𝐯λP.∃y[UNICORNv(y) ∧ P(y)]w =

 λv.λP.∃y[(UNICORN(v))(y) ∧ P(y)](w) =

 λP.∃y[(UNICORN(w))(y) ∧ P(y)] =

 λP.∃y[(UNICORNw(y) ∧ P(y)]]

= λx.SEEKw(x, ∧vλP.∃y[UNICORNv(y) ∧ P(y)]) ∧

 λP.∃y[UNICORNw(y) ∧ P(y)](λy.FINDw(x,y))

The remaining λ-conversions are standard:

seek and find a unicorn →
λx.SEEKw(x, ∧vλP.∃y[UNICORNv(y) ∧ P(y)]) ∧∃y[UNICORNw(y) ∧ FINDw(x,y)]

Anna seeks and finds a unicorn →

 SEEKw(ANNA, ∧vλP.∃y[UNICORNv(y) ∧ P(y)]) ∧

 ∃y[UNICORNw(y) ∧ FINDw(ANNA,y)]

Anna sees a unicorn (de dicto) and Anna finds a unicorn (de re).

